Umweltmeteorologie Publikationen / Environmental meteorology publications

Publikationen / publications

  • Günther Heinemann, Clemens Drüe, and Alexander Makshtas. SODAR observations and model simulations of the wind field structure in the atmospheric boundary layer at Severnaya Zemlya (Siberia) during YOPP. In EGU General Assembly 2023. Copernicus GmbH, May 2023. URL: http://dx.doi.org/10.5194/egusphere-egu23-2112, doi:10.5194/egusphere-egu23-2112.

  • Günther Heinemann, Lukas Schefczyk, Rolf Zentek, Ian M. Brooks, Sandro Dahlke, and Andreas Walbröl. Evaluation of vertical profiles and atmospheric boundary layer structure using the regional climate model cclm during mosaic. Meteorology, 2(2):257–275, June 2023. URL: http://dx.doi.org/10.3390/meteorology2020016, doi:10.3390/meteorology2020016.

  • Sascha Willmes, Günther Heinemann, and Frank Schnaase. Patterns of wintertime arctic sea-ice leads and their relation to winds and ocean currents. The Cryosphere, 17(8):3291–3308, August 2023. doi:10.5194/tc-17-3291-2023.

  • Günther Heinemann, Clemens Drüe, and Alexander Makshtas. A three-year climatology of the wind field structure at cape baranova (severnaya zemlya, siberia) from sodar observations and high-resolution regional climate model simulations during yopp. Atmosphere, 13(6):957, June 2022. URL: http://dx.doi.org/10.3390/atmos13060957, doi:10.3390/atmos13060957.

  • Günther Heinemann, Lukas Schefczyk, Sascha Willmes, and Matthew D. Shupe. Evaluation of simulations of near-surface variables using the regional climate model cclm for the mosaic winter period. Elementa: Science of the Anthropocene, 2022. doi:10.1525/elementa.2022.00033.

  • Günther Heinemann and Clemens Drüe. Sodar/rass profiles and low-level jets at tiksi observatory in 2014/2015, laptev sea. 2021. doi:10.1594/PANGAEA.930275.

  • Günther Heinemann, Clemens Drüe, Pascal Schwarz, and Alexander Makshtas. Observations of wintertime low-level jets in the coastal region of the laptev sea in the siberian arctic using sodar/rass. Remote Sensing, 13(8):1421, 2021. doi:10.3390/rs13081421.

  • Günther Heinemann and Alexander P. Makshtas. Meteorological data of the transarktika 2019 expedition, april 2019. 2021. doi:10.1594/PANGAEA.928568.

  • Günther Heinemann, Sascha Willmes, Lukas Schefczyk, Alexander Makshtas, Vasilii Kustov, and Irina Makhotina. Observations and simulations of meteorological conditions over arctic thick sea ice in late winter during the transarktika 2019 expedition. Atmosphere, 12(2):174, 2021. URL: https://www.mdpi.com/2073-4433/12/2/174 (visited on 2021-11-02), doi:10.3390/atmos12020174.

  • Günther Heinemann and Rolf Zentek. A model-based climatology of low-level jets in the weddell sea region of the antarctic. Atmosphere, 12(12):1635, December 2021. URL: http://dx.doi.org/10.3390/atmos12121635, doi:10.3390/atmos12121635.

  • Jun Inoue, Kazutoshi Sato, Annette Rinke, John Cassano, Xavier Fettweis, Günther Heinemann, Heidrun Matthes, Andrew Orr, Tony Phillips, Mark Seefeldt, Amy Solomon, and Stuart Webster. Clouds and radiation processes in regional climate models evaluated using observations over the ice–free arctic ocean. Journal of Geophysical Research: Atmospheres, 2021. doi:10.1029/2020JD033904.

  • Svenja Kohnemann and Günther Heinemann. A climatology of wintertime low-level jets in nares strait. Polar Research, 2021. doi:10.33265/polar.v40.3622.

  • Alexander Graf, Anne Klosterhalfen, Nicola Arriga, Christian Bernhofer, Heye Bogena, Frédéric Bornet, Nicolas Brüggemann, Christian Brümmer, Nina Buchmann, Jinshu Chi, Christophe Chipeaux, Edoardo Cremonese, Matthias Cuntz, Jiří Dušek, Tarek El-Madany, Silvano Fares, Milan Fischer, Lenka Foltýnová, Mana Gharun, Shiva Ghiasi, Bert Gielen, Pia Gottschalk, Thomas Grünwald, Günther Heinemann, Bernard Heinesch, Michal Heliasz, Jutta Holst, Lukas Hörtnagl, Andreas Ibrom, Joachim Ingwersen, Gerald Jurasinski, Janina Klatt, Alexander Knohl, Franziska Koebsch, Jan Konopka, Mika Korkiakoski, Natalia Kowalska, Pascal Kremer, Bart Kruijt, Sebastien Lafont, Joël Léonard, Anne de Ligne, Bernard Longdoz, Denis Loustau, Vincenzo Magliulo, Ivan Mammarella, Giovanni Manca, Matthias Mauder, Mirco Migliavacca, Meelis Mölder, Johan Neirynck, Patrizia Ney, Mats Nilsson, Eugénie Paul-Limoges, Matthias Peichl, Andrea Pitacco, Arne Poyda, Corinna Rebmann, Marilyn Roland, Torsten Sachs, Marius Schmidt, Frederik Schrader, Lukas Siebicke, Ladislav Šigut, Eeva-Stiina Tuittila, Andrej Varlagin, Nadia Vendrame, Caroline Vincke, Ingo Völksch, Stephan Weber, Christian Wille, Hans-Dieter Wizemann, Matthias Zeeman, and Harry Vereecken. Altered energy partitioning across terrestrial ecosystems in the european drought year 2018. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1810):20190524, 2020. doi:10.1098/rstb.2019.0524.

  • Günther Heinemann. Aircraft measurements of the katabatic boundary layer structure over greenland during campaign kabeg with polar 2. 2020. doi:10.1594/PANGAEA.919223.

  • Günther Heinemann. Assessment of regional climate model simulations of the katabatic boundary layer structure over greenland. Atmosphere, 11(6):571, 2020. doi:10.3390/atmos11060571.

  • Sascha Heinemann, Bastian Siegmann, Frank Thonfeld, Javier Muro, Christoph Jedmowski, Andreas Kemna, Thorsten Kraska, Onno Muller, Johannes Schultz, and Thomas Udelhoven. Land surface temperature retrieval for agricultural areas using a novel uav platform equipped with a thermal infrared and multispectral sensor. Remote Sensing, 12(7):1075, 2020. doi:10.3393/rs12071075.

  • Fabian Reiser, Sascha Willmes, and Günther Heinemann. A new algorithm for daily sea ice lead identification in the arctic and antarctic winter from thermal-infrared satellite imagery. Remote Sensing, 12(12):1957, 2020. URL: https://www.mdpi.com/2072-4292/12/12/1957, doi:10.3390/rs12121957.

  • Fabian Reiser, Sascha Willmes, and Günther Heinemann. Daily sea ice lead data for arctic and antarctic. 2020. doi:10.1594/PANGAEA.917588.

  • Joseph Sedlar, Michael Tjernström, Annette Rinke, Andrew Orr, John Cassano, Xavier Fettweis, Günther Heinemann, Mark Seefeldt, Amy Solomon, Heidrun Matthes, Tony Phillips, and Stuart Webster. Confronting arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations. Journal of Geophysical Research: Atmospheres, 125(6):22, 2020. doi:10.1029/2019JD031783.

  • Rolf Zentek and Günther Heinemann. Verification of the regional atmospheric model cclm v5.0 with conventional data and lidar measurements in antarctica. Geoscientific Model Development, 13(4):1809–1825, 2020. doi:10.5194/gmd-13-1809-2020.

  • Mirseid Akperov, Annetee Rinke, Igor Mokhov, Heidrun Matthes, Vladimir Semenov, Muralidhar Adakudlu, John Cassano, Jens Christensen, Mariya Dembitskaya, Klaus Dethloff, Xavier Fettweis, Justin Glisan, Oliver Gutjahr, Günther Heinemann, Torben Koenigk, Nikolay Koldunov, René Laprise, Ruth Mottram, Oumarou Nikiéma, Mariya Parfenova, John Scinocca, Dmitry Sein, Stefan Sobolowski, Katja Winger, and Wenxin Zhang. Trends of intense cyclone activity in the arctic from reanalyses data and regional climate models (arctic-cordex). IOP Conference Series: Earth and Environmental Science, 231:012003, 2019. doi:10.1088/1755-1315/231/1/012003.

  • Mirseid Akperov, Annette Rinke, Igor Mokhov, Vladimir Semenov, Mariya Parfenova, Heidrun Matthes, Muralidhar Adakudlu, Fredrik Boberg, Jens Christensen, Mariya Dembitskaya, Klaus Dethloff, Xavier Fettweis, Oliver Gutjahr, Günther Heinemann, Torben Koenigk, Nikolay Koldunov, René Laprise, Ruth Mottram, Oumarou Nikiéma, Dmitry Sein, Stefan Sobolowski, Katja Winger, Wenxin Zhang, Igor I. Mokhov, Vladimir A. Semenov, Mariya R. Parfenova, Jens H. Christensen, Mariya A. Dembitskaya, and Nikolay V. Koldunov. Future projections of cyclone activity in the arctic for the 21st century from regional climate models (arctic-cordex). Global and Planetary Change, 182:103005, 2019. doi:10.1016/j.gloplacha.2019.103005.

  • Günther Heinemann, Chantal Claud, and Thomas Spengler. Polar low workshop. Bulletin of the American Meteorological Society, 100(2):ES89–ES92, 2019. doi:10.1175/BAMS-D-18-0103.1.

  • Günther Heinemann, Lukas Glaw, and Sascha Willmes. A satellite-based climatology of wind-induced surface temperature anomalies for the antarctic. Remote Sensing, 11(13):1539, 2019. URL: https://www.mdpi.com/2072-4292/11/13/1539, doi:10.3390/rs11131539.

  • Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, Maria González-Dugo, Günther Heinemann, Cor Jacobs, Matthias Mauder, Arnold Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodr'ıguez, Todd Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph Thomas, Veronika Valler, Matthias Zeeman, and Harry Vereecken. Source partitioning of h_2o and co_2 fluxes based on high-frequency eddy covariance data: a comparison between study sites. Biogeosciences, 16(6):1111–1132, 2019. URL: https://www.biogeosciences.net/16/1111/2019/, doi:10.5194/bg-16-1111-2019.

  • Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, Maria González-Dugo, Günther Heinemann, Cor Jacobs, Matthias Mauder, Arnold Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodr'ıguez, Todd Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph Thomas, Veronika Valler, Matthias Zeeman, and Harry Vereecken. Supplement of source partitioning of $h_2o$ and $co_2$ fluxes based on high-frequency eddy covariance data: a comparison between study sites. Biogeosciences, 2019. URL: https://www.biogeosciences.net/16/1111/2019/, doi:10.5194/bg-16-1111-2019-supplement.

  • Patrizia Ney, Alexander Graf, Heye Bogena, Bernd Diekkrüger, Clemens Drüe, Odilia Esser, Günther Heinemann, Anne Klosterhalfen, Katharina Pick, Thomas Pütz, Marius Schmidt, Veronika Valler, and Harry Vereecken. Co2 fluxes before and after partial deforestation of a central european spruce forest. Agricultural and Forest Meteorology, 274:61–74, 2019. doi:10.1016/j.agrformet.2019.04.009.

  • Andreas Preußer, Kay I. Ohshima, Katsushi Iwamoto, Sascha Willmes, and Günther Heinemann. Arctic polynya regions: daily polynya area and ice production for 2002/2003 to 2017/2018: retrieval of wintertime sea ice production in arctic polynyas using thermal infrared and passive microwave remote sensing data. Journal of Geophysical Research: Oceans, 2019. doi:10.1594/PANGAEA.899854.

  • Andreas Preußer, Kay I. Ohshima, Katsushi Iwamoto, Sascha Willmes, and Günther Heinemann. Retrieval of wintertime sea ice production in arctic polynyas using thermal infrared and passive microwave remote sensing data. Journal of Geophysical Research: Oceans, 124(8):5503–5528, 2019. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JC014976, doi:10.1029/2019JC014976.

  • Fabian Reiser, Sascha Willmes, Ute Hausmann, and Günther Heinemann. Circum-antarctic sea-ice lead-frequencies, 2003-2018: predominant sea ice fracture zones around antarctica and their relation to bathymetric features. Geophysical Research Letters, pages 12117–12124, 2019. doi:10.1594/PANGAEA.906767.

  • Fabian Reiser, Sascha Willmes, Ute Hausmann, and Günther Heinemann. Predominant sea ice fracture zones around antarctica and their relation to bathymetric features. Geophysical Research Letters, 46(21):12117–12124, 2019. URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084624, doi:10.1029/2019GL084624.

  • Rolf Zentek and Günther Heinemann. Cclm simulation (antarctica 2002-2016) - selected data. 2019. doi:10.5281/zenodo.3355401.

  • Rolf Zentek and Günther Heinemann. Verification of the regional atmospheric model cclm v5.0 with conventional data and lidar measurements in antarctica. Geosceintific Model Development, 2019. URL: https://gmd.copernicus.org/preprints/gmd-2019-141/gmd-2019-141.pdf, doi:10.5194/gmd-2019-141.

  • Rolf Zentek and Günther Heinemann. Wind and backscatter profiles measured by a wind lidar during polarstern cruise ps96 (ant-xxxi/2 frosn), supplement to: zentek, rolf; kohnemann, svenja h e; heinemann, günther (2018): analysis of the performance of a ship-borne scanning wind lidar in the arctic and antarctic. atmospheric measurement techniques, 11(10), 5781-5795. 2019. doi:10.1594/PANGAEA.902794.

  • Rolf Zentek, Svenja H. E. Kohnemann, and Günther Heinemann. Wind and backscatter profiles measured by a wind lidar during polarstern cruise ps106/1 (ark-xxxi/1.1). 2019. doi:10.1594/PANGAEA.902799.

  • Rolf Zentek, Svenja H. E. Kohnemann, and Günther Heinemann. Wind and backscatter profiles measured by a wind lidar during polarstern cruise ps106/2 (ark-xxxi/1.2). 2019. doi:10.1594/PANGAEA.902804.

  • Rolf Zentek, Svenja H. E. Kohnemann, and Günther Heinemann. Wind and backscatter profiles measured by a wind lidar during polarstern cruise ps85 (ark-xxviii/2), supplement to: zentek, rolf; kohnemann, svenja h e; heinemann, günther (2018): analysis of the performance of a ship-borne scanning wind lidar in the arctic and antarctic. atmospheric measurement techniques, 11(10), 5781-5795. 2019. doi:10.1594/PANGAEA.902790.

  • Rolf Zentek, Andreas Preußer, and Günther Heinemann. Wind and backscatter profiles measured by a wind lidar during polarstern cruise ps109 (ark-xxxi/4). 2019. doi:10.1594/PANGAEA.902805.

  • Rolf Zentek, Fabian Reiser, Frank Schnaase, and Günther Heinemann. Wind and backscatter profiles measured by a wind lidar during polarstern cruise ps111 (ant-xxxiii/2, frost). 2019. doi:10.1594/PANGAEA.902806.

  • Mirseid Akperov, Annette Rinke, Igor Mokhov, Heidrun Matthes, Vladimir A. Semenov, Muralidhar Adakudlu, John Cassano, Jens Christensen, Mariya Dembitskaya, Klaus Dethloff, Xavier Fettweis, Justin Glisan, Oliver Gutjahr, Günther Heinemann, Torben Koenigk, Nikolay Koldunov, René Laprise, Ruth Mottram, Oumarou Nikiéma, John Scinocca, Dmitry Sein, Stefan Sobolowski, Katja Winger, and Wenxin Zhang. Cyclone activity in the arctic from an ensemble of regional climate models (arctic cordex). Journal of Geophysical Research: Atmospheres, 123(5):2537–2554, 2018. doi:10.1002/2017JD027703.

  • Stephan Feldmeier, Lukas Schefczyk, Axel Hochkirch, Stefan Lötters, Manfred A. Pfeifer, Günther Heinemann, and Michael Veith. Climate versus weather extremes: temporal predictor resolution matters for future rather than current regional species distribution models. Diversity and Distributions, 24(8):1047–1060, 2018. URL: https://onlinelibrary.wiley.com/doi/10.1111/ddi.12746, doi:10.1111/ddi.12746.

  • Oliver Gutjahr and Günther Heinemann. A model-based comparison of extreme winds in the arctic and around greenland. 2018. doi:10.1002/joc.5729.

  • Günther Heinemann. An aircraft-based study of strong gap flows in nares strait, greenland. Monthly Weather Review, 146(11):3589–3604, 2018. doi:10.1175/MWR-D-18-0178.1.

  • Günther Heinemann. Der katabatische wind über grönland. In Jörg Rapp and Burghard Brümmer, editors, Atmosphärische Prozesse im arktischen Klimasystem, Promet. Deutscher Wetterdienst Fachinformationsstelle und Deutsche Meteorologische Bibliothek, Offenbach/M, 2018.

  • Philipp Reiter, Oliver Gutjahr, Lukas Schefczyk, Günther Heinemann, and Markus Casper. Does applying quantile mapping to subsamples improve the bias correction of daily precipitation? International Journal of Climatology, 38(4):1623–1633, 2018. URL: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5283, doi:10.1002/joc.5283.

  • S. Willmes, G. Heinemann, and A. Preusser. Arktische polynjen. In B. Brümmer, editor, Atmosphärische Prozesse im Arktischen Klimasystem, Promet - Meteorologisch Forbildung, pages 56–60. Deutscher Wetterdienst, Offenbach, Germany, 2018.

  • Sascha Willmes, Günther Heinemann, and Andreas Preußer. Atmosphärische prozesse im arktischen klimasystem: arktische polynjen. Promet, pages 56–60, 2018. URL: https://www.gbv.de/dms/tib-ub-hannover/1046840746.pdf (visited on 04.01.2022).

  • Rolf Zentek, Svenja Kohnemann, and Günther Heinemann. Analysis of the performance of a ship-borne scanning wind lidar in the Arctic and Antarctic. Atmos. Meas. Tech., 11(10):5781–5795, 2018. URL: https://amt.copernicus.org/articles/11/5781/2018/, doi:10.5194/amt-11-5781-2018.

  • Patrizia Ney, Alexander Graf, Heye Bogena, Bernd Diekkrüger, Clemens Drüe, Odilia Esser, Günther Heinemann, Anne Klosterhalfen, Katharina Pick, Thomas Pütz, Marius Schmidt, Veronika Valler, and Harry Vereecken. Co2 fluxes before and after partially deforestation of a central european spruce forest. Agric For Meteorol, 2018.

  • Günther Heinemann, M. Braun, T. Brey, D. Damaske, M. Melles, M. Rhein, and S. Willmes. Polarforschungsagenda 2030 - Status und Perspektiven der deutschen Polarforschung. Deutsches Nationalkomitee SCAR/IASC, 2017. ISBN 978-3-00-057242-5. URL: https://www.dfg.de/download/pdf/dfg_im_profil/geschaeftsstelle/publikationen/polarforschungsagenda_2030.pdf.

  • Markus Janout, Jens Hölemann, Leonid Timokhov, Oliver Gutjahr, and Günther Heinemann. Circulation in the northwest laptev sea in the eastern arctic ocean: crossroads between siberian river water, atlantic water and polynya-formed dense water. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 122(8):6630–6647, 2017. doi:10.1002/2017JC013159.

  • Svenja Kohnemann, Günther Heinemann, David Bromwich, and Oliver Gutjahr. Extreme warming in the kara sea and barents sea during the winter period 2000–16. Journal of Climate, 30(22):8913–8927, 2017. doi:10.1175/JCLI-D-16-0693.1.

  • Lukas Schefczyk and Günther Heinemann. Climate change impact on thunderstorms: analysis of thunderstorm indices using high-resolution regional climate simulations. Meteorologische Zeitschrift, pages 409–419, 2017. URL: https://www.schweizerbart.de/papers/metz/detail/26/87340/Climate_change_impact_on_thunderstorms_Analysis_of_thunderstorm_indices_using_high_resolution_regional_climate_simulations (visited on 2021-11-02), doi:10.1127/metz/2017/0749.

  • Thomas Spengler, Chantal Claud, and Günther Heinemann. Polar low workshop summary. Bulletin of the American Meteorological Society, 98(6):ES139–ES142, 2017. doi:10.1175/BAMS-D-16-0207.1.

  • Stephan Feldmeier, Lukas Schefczyk, Norman Wagner, Günther Heinemann, Michael Veith, and Stefan Lötters. Exploring the distribution of the spreading lethal salamander chytrid fungus in its invasive range in europe – a macroecological approach. PLOS ONE, 11(10):e0165682, 2016. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165682 (visited on 2021-11-02), doi:10.1371/journal.pone.0165682.

  • Oliver Gutjahr, Günther Heinemann, Andreas Preußer, Sascha Willmes, and Clemens Drüe. Quantification of ice production in laptev sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model. The Cryosphere, 10(6):2999–3019, 2016. URL: https://tc.copernicus.org/articles/10/2999/2016/, doi:10.5194/tc-10-2999-2016.

  • Oliver Gutjahr, Lukas Schefczyk, Philipp Reiter, and Günther Heinemann. Impact of the horizontal resolution on the simulation of extremes in cosmo-clm. Meteorologische Zeitschrift, pages 543–562, 2016. URL: https://www.schweizerbart.de/papers/metz/detail/25/86740/Impact_of_the_horizontal_resolution_on_the_simulation_of_extremes_in_COSMO_CLM (visited on 2021-11-02), doi:10.1127/metz/2016/0638.

  • Hartmut Hellmer, Monika Rhein, Günther Heinemann, Janna Abalichin, Wafa Abouchami, Oliver Baars, Ulrich Cubasch, Klaus Dethloff, Lars Ebner, Eberhard Fahrbach, Martin Frank, Gereon Gollan, Richard Greatbatch, Jens Grieger, Vladimir Gryanik, Micha Gryschka, Judith Hauck, Mario Hoppema, Oliver Huhn, Torsten Kanzow, Boris Koch, Gert König-Langlo, Ulrike Langematz, Gregor Leckebusch, Christof Lüpkes, Stephan Paul, Annette Rinke, Bjoern Rost, Michiel van der Loeff, Michael Schröder, Gunther Seckmeyer, Torben Stichel, Volker Strass, Ralph Timmermann, Scarlett Trimborn, Uwe Ulbrich, Celia Venchiarutti, Ulrike Wacker, Sascha Willmes, and Dieter Wolf-Gladrow. Meteorology and oceanography of the atlantic sector of the southern ocean–a review of german achievements from the last decade. Ocean Dynamics, 66 (11):1379–1413, 2016. URL: https://link.springer.com/article/10.1007%2Fs10236-016-0988-1, doi:10.1007/s10236-016-0988-1.

  • A. Preußer, G. Heinemann, S. Willmes, and S. Paul. Circumpolar polynya regions and ice production in the arctic: results from modis thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the laptev sea. The Cryosphere, 10(6):3021–3042, 2016. doi:10.5194/tc-10-3021-2016.

  • Andreas Preußer, Günther Heinemann, Sascha Willmes, and Stephan Paul. Daily polynya area and ice production in circumpolar polynya regions in the arctic for 2002/2003 to 2014/2015, supplement to: preußer, andreas; heinemann, günther; willmes, sascha; paul, stephan (2016): circumpolar polynya regions and ice production in the arctic: results from modis thermal infrared imagery for 2002/2003 to 2014/2015 with a regional focus on the laptev sea. the cryosphere, 10(6), 3021-3042. 2016. doi:10.1594/PANGAEA.869294.

  • Philipp Reiter, Oliver Gutjahr, Lukas Schefczyk, Günther Heinemann, and Markus Casper. Bias correction of ensembles precipitation data with focus on the effect of the length of the calibration period. Meteorologische Zeitschrift, pages 85–96, 2016. URL: https://www.schweizerbart.de/papers/metz/detail/25/85362/Bias_correction_of_ENSEMBLES_precipitation_data_with_focus_on_the_effect_of_the_length_of_the_calibration_period, doi:10.1127/metz/2015/0714.

  • Sascha Willmes and Günther Heinemann. Sea-ice wintertime lead frequencies and regional characteristics in the arctic, 2003–2015. Remote Sensing, 2016. URL: https://www.mdpi.com/2072-4292/8/1/4, doi:10.3390/rs8010004.

  • Elena Zakharova, Sara Fleury, Kévin Guerreiro, Sascha Willmes, Frédérique Rémy, Alexei Kouraev, and Günther Heinemann. Monthly arctic sea ice lead fraction in 0.5° x 0.5° resolution from saral/altika altimeter. Marine Geodesy,, 38(sup1):522–533, 2016. doi:10.1594/PANGAEA.862882.

  • Rolf Zentek, Günther Heinemann, and Ekkehard Sachs. Climatology of wind, kinetic energy, and temperature spectra using a high-resolution climate model for mid-europe. Journal of Climate, 29(3):963–974, 2016. URL: https://journals.ametsoc.org/configurable/content/journals$002fclim$002f29$002f3$002fjcli-d-15-0540.1.xml?t:ac=journals%24002fclim%24002f29%24002f3%24002fjcli-d-15-0540.1.xml, doi:10.1175/jcli-d-15-0540.1.

  • Verena Haid, Ralph Timmermann, Lars Ebner, and Günther Heinemann. Atmospheric forcing of coastal polynyas in the south-western weddell sea. Antarctic Science, 27(4):388–402, 2015. doi:10.1017/S0954102014000893.

  • Mario Hoppmann, Marcel Nicolaus, Stephan Paul, Priska Hunkeler, Günther Heinemann, Sascha Willmes, Ralph Timmermann, Olaf Boebel, Thomas Schmidt, Meike Kuehnel, Gert Koenig-Langlo, and Ruediger Gerdes. Ice platelets below weddell sea landfast sea ice. Annals of Glaciology, 56(69, 1):175–190, 2015. URL: https://www.cambridge.org/core/journals/annals-of-glaciology/article/ice-platelets-below-weddell-sea-landfast-sea-ice/30CB72FCF29DC5D67B37C1BFBF247B41, doi:10.3189/2015AoG69A678.

  • Stephan Paul, Sascha Willmes, Oliver Gutjahr, Andreas Preußer, and Günther Heinemann. Spatial feature reconstruction of cloud-covered areas in daily modis composites. Remote Sensing, 7(5):5042–5056, 2015. URL: https://www.mdpi.com/2072-4292/7/5/5042, doi:10.3390/rs70505042.

  • Stephan Paul, Sascha Willmes, and Günther Heinemann. Daily modis composites of thin-ice thickness and ice-surface temperatures for the southern weddell sea, supplement to: paul, stephan; willmes, sascha; heinemann, günther (2015): long-term coastal-polynya dynamics in the southern weddell sea from modis thermal-infrared imagery. the cryosphere, 9(6), 2027-2041. 2015. doi:10.1594/PANGAEA.848612.

  • Stephan Paul, Sascha Willmes, and Günther Heinemann. Long-term coastal-polynya dynamics in the southern weddell sea from modis thermal-infrared imagery. The Cryosphere, 9(6):2027–2041, 2015. URL: https://tc.copernicus.org/articles/9/2027/2015/, doi:10.5194/tc-9-2027-2015.

  • Stephan Paul, Sascha Willmes, Mario Hoppmann, Priska Hunkeler, Christine Wesche, Marcel Nicolaus, Günther Heinemann, and Ralph Timmermann. The impact of early-summer snow properties on antarctic landfast sea-ice x-band backscatter. Annals of Glaciology, 56(69):263–273, 2015. URL: https://www.cambridge.org/core/journals/annals-of-glaciology/article/impact-of-earlysummer-snow-properties-on-antarctic-landfast-seaice-xband-backscatter/8CE65DC6E32E01A3F211213864CADA9B, doi:10.3189/2015AoG69A715.

  • Stephan Paul, Sascha Willmes, Mario Hoppmann, Priska A. Hunkeler, Christine Wesche, Marcel Nicolaus, Günther Heinemann, and Ralph Timmermann. Snow grain size and type determination on atka bay landfast sea ice during ant-land 2012/2013 season. 2015. doi:10.1594/PANGAEA.848911.

  • Stephan Paul, Sascha Willmes, Mario Hoppmann, Priska A. Hunkeler, Christine Wesche, Marcel Nicolaus, Günther Heinemann, and Ralph Timmermann. Snow temperature measured on atka bay landfast sea ice during ant-land 2012/2013 season. 2015. doi:10.1594/PANGAEA.848913.

  • Andreas Preußer, Günther Heinemann, Sascha Willmes, and Stephan Paul. Daily polynya area and ice production in the north water polynya region, supplement to: preußer, andreas; heinemann, günther; willmes, sascha; paul, stephan (2015): multi-decadal variability of polynya characteristics and ice production in the north water polynya by means of passive microwave and thermal infrared satellite imagery. remote sensing, 7(12), 15844-15867. 2015. doi:10.1594/PANGAEA.854921.

  • Andreas Preußer, Günther Heinemann, Sascha Willmes, and Stephan Paul. Multi-decadal variability of polynya characteristics and ice production in the north water polynya by means of passive microwave and thermal infrared satellite imagery. Remote Sensing, 7(12):15844–15867, 2015. URL: https://www.mdpi.com/2072-4292/7/12/15807, doi:10.3390/rs71215807.

  • Andreas Preußer, Sascha Willmes, Günther Heinemann, and Stephan Paul. Thin-ice dynamics and ice production in the storfjorden polynya for winter seasons 2002/2003-2013/2014 using modis thermal infrared imagery. The Cryosphere, 9(3):1063–1073, 2015. doi:10.5194/tc-9-1063-2015.

  • Sascha Willmes and Günther Heinemann. Daily pan-arctic sea-ice lead maps for 2003-2015, with links to maps in netcdf format: sea-ice wintertime lead frequencies and regional characteristics in the arctic, 2003-2015. remote sensing, 8(1), 4. 2015. doi:10.1594/PANGAEA.854411.

  • Sascha Willmes and Günther Heinemann. Pan-arctic lead detection from modis thermal infrared imagery. Annals of Glaciology, 56(69):29–37, 2015. URL: https://www.cambridge.org/core/journals/annals-of-glaciology/article/panarctic-lead-detection-from-modis-thermal-infrared-imagery/4F11C6FE5DE7FB50FE348988ABFE1D79, doi:10.3189/2015AoG69A615.

  • Sascha Willmes, Günther Heinemann, and Alfred Helbig. Kryosphäre – gegenwart und zukunft. In Warnsignal Klima: Das Eis der Erde, pages 25–30. 2015. doi:10.2312/warnsignal.klima.eis-der-erde.04.

  • Elena Zakharova, Sara Fleury, Kevin Guerreiro, Sascha Willmes, Frederique Remy, Alexei Kouraev, and Guenther Heinemann. Sea ice leads detection using saral/altika altimeter. MARINE GEODESY, 38(1, SI):522–533, 2015. URL: https://www.tandfonline.com/doi/abs/10.1080/01490419.2015.1019655?journalCode=umgd20, doi:10.1080/01490419.2015.1019655.

  • Saskia Buchholz, Andreas Krein, Jürgen Junk, and Günther Heinemann. Size-segregated atmospheric particle mass concentration in urban areas in luxembourg. Water, Air, & Soil Pollution, 2014. doi:10.1007/s11270-014-1891-3.

  • Lars Ebner, Günther Heinemann, Verena Haid, and Ralph Timmermann. Katabatic winds and polynya dynamics at coats land, antarctica. Antarctic Science, 26(03):309–326, 2014. doi:10.1017/S0954102013000679.

  • Alexander Graf, Heye Bogena, Clemens Drüe, Horst Hardelauf, Thomas Pütz, Günther Heinemann, and Harry Vereecken. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resources Research, 50(6):4837–4857, 2014. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2013WR014516, doi:10.1002/2013WR014516.

  • Günther Heinemann. Der katabatische Wind über den polaren Eisschilden. Warnsignal Klima: Die Polarregionen, pages 260–264, 2014. doi:10.2312/warnsignal.klima.die-Polarregionen.38.

  • Günther Heinemann. Polare Mesozyklonen: die Hurrikane der Polargebiete. In Warnsignal Klima: Die Polarregionen, pages 102–106. 2014. doi:10.2312/warnsignal.klima.die-Polarregionen.14.

  • Mario Hoppmann, Marcel Nicolaus, Stephan Paul, Priska A. Hunkeler, Günther Heinemann, Sascha Willmes, Ralph Timmermann, Olaf Boebel, Thomas Schmidt, Meike Kühnel, Gert König-Langlo, and Rüdiger Gerdes. Field measurements on atka bay landfast sea ice in 2012: ice platelets below weddell sea landfast sea ice. 2014. doi:10.1594/PANGAEA.824434.

  • Susanne Adams, Sascha Willmes, David Schröder, Günther Heinemann, Martin Bauer, and Thomas Krumpen. Improvement and sensitivity analysis of thermal thin-ice thickness retrievals. IEEE Transactions on Geoscience and Remote Sensing, 51(6):3306–3318, 2013. URL: https://ieeexplore.ieee.org/document/6357238, doi:10.1109/TGRS.2012.2219539.

  • Martin Bauer, David Schröder, Günther Heinemann, Sascha Willmes, and Lars Ebner. Quantifying polynya ice production in the laptev sea with the cosmo model. Polar Research, 2013. URL: https://polarresearch.net/index.php/polar/article/view/3088, doi:10.3402/polar.v32i0.20922.

  • Saskia Buchholz, Andreas Krein, Jürgen Junk, Günther Heinemann, and Lucien Hoffmann. Simulation of urban-scale air pollution patterns in luxembourg: contributing sources and emission scenarios. Environmental Modeling & Assessment, 18(3):271–283, 2013. doi:10.1007/s10666-012-9351-1.

  • Clemens Drüe and Günther Heinemann. A review and practical guide to in-flight calibration for aircraft turbulence sensors. J Atmos Oceanic Technol, 30(12):2820–2837, 2013. doi:10.1175/JTECH-D-12-00103.1.

  • Oliver Gutjahr and Günther Heinemann. Comparing precipitation bias correction methods for high-resolution regional climate simulations using cosmo-clm. Theoretical and Applied Climatology, 114(3-4):511–529, 2013. doi:10.1007/s00704-013-0834-z.

  • Günther Heinemann and Øyvind Saetra. Workshop on polar lows. Bulletin of the American Meteorological Society, 94(9):ES123–ES126, 2013. doi:10.1175/BAMS-D-12-00190.1.

  • Markus Casper, Gayane Grigoryan, Oliver Gronz, Oliver Gutjahr, Günther Heinemann, R. Ley, and A. Rock. Analysis of projected hydrological behavior of catchments based on signature indices. Hydrology and Earth System Sciences, 16(2):409–421, 2012. doi:10.5194/hess-16-409-2012.

  • Günther Heinemann and Kathrin Häb. Erfassung des mikroklimas an der trierer konstantinbasilika. In Nicole Riedl-Siedow, editor, Weltkulturerbe Konstantinbasilika Trier: Wandmalereien in freier Bewitterung als konservatorische Herausforderung; internationale Tagung des Deutschen Nationalkomitees von ICOMOS in Zusammenarbeit mit der HAWK Hochschule für angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Göttingen, der Generaldirektion Kulturelles Erbe Rheinland-Pfalz und dem Landesbetrieb Liegenschafts- und Baubetreuung LBB; Trier, Kurfürstliches Palais, 7. bis 9. April 2011, Hefte des Deutschen Nationalkomitees / ICOMOS. Bäßler, Berlin, 2012.

  • Christoph Lüpkes, Timo Vihma, Gerit Birnbaum, Silke Dierer, Thomas Garbrecht, Vladimir Gryanik, Micha Gryschka, Jörg Hartmann, Günther Heinemann, Lars Kaleschke, Siegfried Raasch, Hannu Sarvijärvi, Heinke Schlünzen, Ulrike Wacker, Christof Lüpkes, Vladimir M. Gryanik, Hannu Savijärvi, and K. Heinke Schlünzen. Mesoscale modelling of the arctic atmospheric boundary layer and its interaction with sea ice. In Peter Lemke and Hans-Werner Jacobi, editors, Arctic Climate Change, volume 43 of SpringerLink Bücher, pages 279–324. Springer Netherlands, Dordrecht, 2012. doi:10.1007/978-94-007-2027-5{\textunderscore }7.

  • Clemens Drüe, Alexander Graf, and Günther Heinemann, editors. Measurement and quality control of atmosphere-forest exchange processes at the new TERENO site Wüstebach, 2011. URL: http://meetingorganizer.copernicus.org/EMS2011/EMS2011-199.pdf.

  • Lars Ebner, David Schröder, and Günther Heinemann. Impact of laptev sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations. Polar Research, 30(1):7210, 2011. doi:10.3402/polar.v30i0.7210.

  • T. Ernsdorf, D. Schröder, S. Adams, G. Heinemann, R. Timmermann, and S. Danilov. Impact of atmospheric forcing data on simulations of the laptev sea polynya dynamics using the sea-ice ocean model fesom. Journal of Geophysical Research: Atmospheres, 2011. doi:10.1029/2010JC006725.

  • Günther Heinemann, T. Ernsdorf, Drüe, and C. Investigation of katabatic winds and polynyas during summer - ikapos : field phase report. Reports on polar and marine research, 633:125, 2011. URL: http://hdl.handle.net/10013/epic.37929.

  • Thomas Krumpen, Jens Hölemann, Sascha Willmes, Miguel Morales Maqueda, T. Busche, Igor A. Dmitrenko, Rüdiger Gerdes, Christian Haas, Günther Heinemann, S. Hendricks, Heidemarie Kassens, Lasse Rabenstein, and David Schröder. Sea ice production and water mass modification in the eastern laptev sea. Journal of Geophysical Research: Oceans, 116:C05014, 2011. URL: http://oceanrep.geomar.de/13226/, doi:10.1029/2010JC006545.

  • David Schröder, Günther Heinemann, and Sascha Willmes. The impact of a thermodynamic sea-ice module in the cosmo numerical weather prediction model on simulations for the laptev sea, siberian arctic. Polar Research, 2011. URL: https://polarresearch.net/index.php/polar/article/view/3065, doi:10.3402/polar.v30i0.6334.

  • Sascha Willmes, Susanne Adams, David Schröder, and Günther Heinemann. Daily polynya area in the laptev sea polynyas. 2011. doi:10.1594/PANGAEA.793229.

  • Sascha Willmes, Susanne Adams, David Schröder, and Günther Heinemann. Spatio-temporal variability of polynya dynamics and ice production in the laptev sea between the winters of 1979/80 and 2007/08. Polar Research, 2011. URL: https://polarresearch.net/index.php/polar/article/view/3064, doi:10.3402/polar.v30i0.5971.

  • Susanne Adams, Sascha Willmes, Günther Heinemann, Polona Rozman, Ralph Timmermann, and David Schröder. Evaluation of simulated sea-ice concentrations from sea-ice/ ocean models using satellite data and polynya classification methods. Polar Research, 2011. URL: https://polarresearch.net/index.php/polar/article/view/3066, doi:10.3402/polar.v30i0.7124.

  • Saskia Buchholz, Jürgen Junk, Andreas Krein, Günther Heinemann, and Lucien Hoffmann. Air pollution characteristics associated with mesoscale atmospheric patterns in northwest continental europe. Atmospheric Environment, 44(39):5183–5190, 2010. doi:10.1016/j.atmosenv.2010.08.053.

  • Igor Dmitrenko, Sergey Kirillov, Bruno Tremblay, Dorothea Bauch, Jens Hölemann, Thomas Krumpen, Heidemarie Kassens, Carolyn Wegner, Günther Heinemann, and David Schröder. Impact of the arctic ocean atlantic water layer on siberian shelf hydrography. Journal of Geophysical Research: Atmospheres, 2010. doi:10.1029/2009JC006020.

  • Igor Dmitrenko, Carolyn Wegner, Heidemarie Kassens, Sergey Kirillov, Thomas Krumpen, Günther Heinemann, Alfred Helbig, David Schröder, Jens Hölemann, Torben Klagge, Konstantin Tyshko, Thomas Busche, Igor A. Dmitrenko, Sergey A. Kirillov, Jens A. Hölemann, and Konstantin P. Tyshko. Observations of supercooling and frazil ice formation in the laptev sea coastal polynya. Journal of Geophysical Research: Atmospheres, 2010. doi:10.1029/2009JC005798.

  • Igor Dmitrenko, Carolyn Wegner, Heidemarie Kassens, Sergey Kirillov, Thomas Krumpen, Günther Heinemann, Alfred Helbig, David Schröder, Jens Hölemann, Torben Klagge, Konstantin Tyshko, and Thomas Busche. Observations of supercooling and frazil ice formation in the Laptev Sea coastal polynya. Journal of Geophysical Research: Oceans, 115(C5):9, 5 2010. doi:10.1029/2009jc005798.

  • Christoph Knote and Günther Rockel Heinemann. Changes in weather extremes: assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorologische Zeitschrift, 19(1):11–23, 2010. doi:10.1127/0941-2948/2010/0424.

  • Sascha Willmes, Thomas Krumpen, S Adams, L. Rabenstein, C. Haas, J. Hoelemann, S. Hendricks, and G. Heinemann. Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: a case study for the laptev sea. Canadian Journal of Remote Sensing, 36(sup1):S196–S210, 2010. doi:10.5589/m10-012.

  • Susanne Adams, Reinhold Spang, Peter Preuße, and Günther Heinemann. The benefit of limb cloud imaging for infrared limb sounding of tropospheric trace gases. Atmospheric Measurement Techniques, 2(1):287–298, 2009. doi:10.5194/amt-2-287-2009.

  • E.-M. Gerstner and G. Heinemann. Real-time areal precipitation determination from radar by means of statistical objective analysis. Journal of Hydrology, 352(3-4):296–308, 2008. doi:10.1016/j.jhydrol.2008.01.016.

  • Günther Heinemann. The polar regions: a natural laboratory for boundary layer meteorology a review. Meteorologische Zeitschrift, 17(5):589–601, 2008. doi:10.1127/0941-2948/2008/0327.

  • Clemens Drüe and Günther Heinemann. Characteristics of intermittent turbulence in the upper stable boundary layer over greenland. Boundary-Layer Meteorology, 124(3):361–381, 2007. doi:10.1007/s10546-007-9175-8.

  • Heike Hebbinghaus and Gunther Heinemann. Lm simulations of the greenland boundary layer, comparison with local measurements and snowpack simulations of drifting snow. Cold Regions Science and Technology, 46(1):36–51, 2006. doi:10.1016/j.coldregions.2006.05.003.

  • G. Heinemann. On the consideration of mesoscale transports in climate modelling. Theoretical and Applied Climatology, 83(1-4):35–50, 2006. doi:10.1007/s00704-005-0159-7.

  • Günther Heinemann. Polar lows and mesoscale weather systems. In Beau Riffenburgh, editor, Encyclopedia of the Antarctic. Taylor & Francis Books, Inc and Routledge, New York, 2006.

  • Günther Heinemann and Michael Kerschgens. Simulation of surface energy fluxes using high-resolution non-hydrostatic simulations and comparisons with measurements for the litfass-2003 experiment. Boundary-Layer Meteorology, 121(1):195–220, 2006. doi:10.1007/s10546-006-9107-z.

  • B. Maurer and Günther Heinemann. Validation of the “lokal-modell” over heterogeneous land surfaces using aircraft-based measurements of the reeefa experiment and comparison with micro-scale simulations. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 91(1-4):107–128, 2006. doi:10.1007/s00703-004-0105-8.

  • H.-T. Mengelkamp, F. Beyrich, G. Heinemann, F. Ament, J. Bange, F. Berger, J. Bösenberg, T. Foken, B. Hennemuth, C. Heret, S. Huneke, K.-P. Johnsen, M. Kerschgens, W. Kohsiek, J.-P. Leps, C. Liebethal, H. Lohse, M. Mauder, W. Meijninger, S. Raasch, C. Simmer, T. Spieß, A. Tittebrand, J. Uhlenbrock, and P. Zittel. Evaporation over a heterogeneous land surface. Bulletin of the American Meteorological Society, 87(6):775–786, 2006. doi:10.1175/BAMS-87-6-775.

  • Clemens Drüe and Günther Heinemann. Accuracy assessment of sea-ice concentrations from modis using in-situ measurements. Remote Sensing of the Environment, 95(2):139–149, 2005. URL: https://www.sciencedirect.com/science/article/abs/pii/S0034425704003748?via%3Dihub, doi:10.1016/j.rse.2004.12.004.

  • C. Drüe and G. Heinemann. Accuracy assessment of sea-ice concentrations from modis using in-situ measurements. Remote Sensing of Environment, 95(2):139–149, 2005.

  • Günther Heinemann and Michael Kerschgens. Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. International Journal of Climatology, 25(3):379–403, 2005. doi:10.1002/joc.1123.

  • Chantal Claud, Guenther Heinemann, Elmer Raustein, and Lynn McMurdie. Polar low le cygne: satellite observations and numerical simulations. Quarterly Journal of the Royal Meteorological Society, 130(598):1075–1102, 2004. doi:10.1256/qj.03.72.

  • Clemens Drüe and Günther Heinemann. High-resolution maps of the sea-ice concentration from modis satellite data. Geophysical Research Letters, 31:1–15, 2004. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2004GL020808, doi:10.1029/2004GL020808.

  • Günther Heinemann. Local similarity properties of the continuously turbulent stable boundary layer over greenland. Boundary-Layer Meteorology, 112(2):283–305, 2004. doi:10.1023/B:BOUN.0000027908.19080.b7.

  • Clemens Drüe and Günther Heinemann. Investigation of the greenland atmospheric boundary layer over summit 2002 (iglos). field phase report. Reports on polar and marine research, 447:1–81, 2003. URL: https://epic.awi.de/id/eprint/26626/1/BerPolarforsch2003447.pdf.

  • Günther Heinemann. Forcing and feedback mechanisms between the katabatic wind and sea ice in the coastal areas of polar ice sheets. Journal of Atmospheric & Ocean Science, 9(4):169–201, 2003. doi:10.1080/1023673042000198130.

  • Günther Heinemann and Christoph Reudenbach. Precipitation dynamics of convective clouds. In Horst Neugebauer and Clemens Simmer, editors, Dynamics of Multiscale Earth Systems, volume 97 of Lecture Notes in Earth Sciences, pages 186–198. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. doi:10.1007/3-540-45256-7{\textunderscore }11.

  • Clemens Drüe and Günther Heinemann. Turbulence structures over the marginal ice zone under flow parallel to the ice edge: measurements and parameterizations. Boundary-Layer Meteorology, 102:83–116, 2002. URL: https://link.springer.com/article/10.1023%2FA%3A1012776719250, doi:10.1023/A:1012776719250.

  • C. Drüe and G. Heinemann. Turbulence structures over the marginal ice zone under flow parallel to the ice edge: measurements and parameterizations. Boundary-Layer Meteorology, 102(1):83–116, 2002.

  • Günther Heinemann. Aircraft-based measurements of turbulence structures in the katabatic flow over greenland. Boundary-Layer Meteorology, 103(1):49–81, 2002. doi:10.1023/A:1014537229865.

  • Günther Heinemann and Ulrike Falk. Surface winds and energy fluxes near the greenland ice margin under conditions of katabatic winds. Polarforschung, 71(1/2):15–31, 2002. URL: https://epic.awi.de/id/eprint/28495/ (visited on 17.01.2022).

  • Günther Heinemann and Thomas Klein. Modelling and observations of the katabatic flow dynamics over greenland. Tellus A, 54(5):542–554, 2002. doi:10.1034/j.1600-0870.2002.201401.x.

  • Thomas Klein and G??nther Heinemann. Interaction of katabatic winds and mesocyclones near the eastern coast of greenland. Meteorological Applications, 9(4):407–422, 2002. doi:10.1017/S1350482702004036.

  • P. Braun, B. Maurer, G. Mller, P. Gross, G. Heinemann, and C. Simmer. An integrated approach for the determination of regionale vapotranspiration using mesoscale modelling, remote sensing and boundary layer measurements. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 76(1-4):83–105, 2001. doi:10.1007/s007030170041.

  • David Bromwich, John Cassano, Thomas Klein, Gunther Heinemann, Keith Hines, Konrad Steffen, and Jason Box. Mesoscale modeling of katabatic winds over greenland with the polar mm5*. Monthly Weather Review, 129(9):2290–2309, 2001. doi:10.1175/1520-0493(2001)129{\textless}2290:MMOKWO{\textgreater}2.0.CO;2.

  • Clemens Drüe and Günther Heinemann. Airborne investigation of arctic boundary-layer fronts over the marginal ice zone of the davis strait. Boundary-Layer Meteorology, 101:261–292, 2001. URL: https://link.springer.com/article/10.1023%2FA%3A1019223513815, doi:10.1023/A:1019223513815.

  • C. Drüe and G. Heinemann. Airborne investigation of arctic boundary-layer fronts over the marginal ice zone of the davis strait. Boundary-Layer Meteorology, 101(2):261–292, 2001.

  • G. Heinemann, C. Reudenbach, E. Heuel, J. Bendix, and M. Winiger. Investigation of summertime convective rainfall in western europe based on a synergy of remote sensing data and numerical models. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 76(1-4):23–41, 2001. doi:10.1007/s007030170037.

  • Thomas Klein and Günther Heinemann. On the forcing mechanisms of mesocyclones in the eastern weddell sea region, antarctica: process studies using a mesoscale numerical model. Meteorologische Zeitschrift, 10(2):113–122, 2001. doi:10.1127/0941-2948/2001/0010-0113.

  • Thomas Klein, Günther Heinemann, David Bromwich, John Cassano, and Keith Hines. Mesoscale modeling of katabatic winds over greenland and comparisons with aws and aircraft data. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 78(1-2):115–132, 2001. doi:10.1007/s007030170010.

  • Thomas Klein, Günther Heinemann, and Patrick Gross. Simulation of the katabatic flow near the greenland ice margin using a high-resolution nonhydrostatic model. Meteorologische Zeitschrift, 10(4):331–339, 2001. doi:10.1127/0941-2948/2001/0010-0331.

  • P. Braun, B. Maurer, and Günther Heinemann. Scaling transpiration in apple orchards – meteorological versus plant based physiological meaurements. Acta Horticulturae, pages 45–51, 2000. doi:10.17660/ActaHortic.2000.537.2.

  • Günther Heinemann. On the streakiness of katabatic wind signatures on high-resolution avhrr satellite images: results from the aircraft-based experiment kabeg. Polarforschung, 66(3):19–30, 2000. URL: http://epic.awi.de/28388/.

  • Günther Heinemann. The kabeg'97 field experiment: an aircraft-based study of katabatic wind dynamics over the greenland ice sheet. Boundary-Layer Meteorology, 93(1):75–116, 1999. doi:10.1023/A:1002009530877.

  • Michael Lieder and Günther Heinemann. A summertime antarctic mesocyclone event over the southern pacific during frost sop-3: a mesoscale analysis using avhrr, ssm/i, ers, and numerical model data. Weather and Forecasting, 14(6):893–908, 1999. doi:10.1175/1520-0434(1999)014{\textless}0893:ASAMEO{\textgreater}2.0.CO;2.

  • Birgit Drüen and Günther Heinemann. Rain rate estimation from a synergetic use of ssm/i, avhrr and meso-scale numerical model data. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 66(1-2):65–85, 1998. doi:10.1007/BF01030449.

  • Günther Heinemann. A mesoscale model-based study of the dynamics of a wintertime polar low in the weddell sea region of the antarctic during the winter weddell sea program field phase 1986. Journal of Geophysical Research: Atmospheres, 103(D6):5983–6000, 1998. doi:10.1029/97JD03488.

  • Gunther Heinemann and Chantal Claud. Report of a workshop on theoretical and observational studies of polar lows” of the european geophysical society polar lows working group. Bulletin of the American Meteorological Society, 78(11):2643–2658, 1997. doi:10.1175/1520-0477-78.11.2643.

  • Günther Heinemann. Idealized simulations of the antarctic katabatic wind system with a three-dimensional mesoscale model. Journal of Geophysical Research: Atmospheres, 102(D12):13825–13834, 1997. doi:10.1029/97JD00457.

  • Rolf Engels and Günther Heinemann. Three-dimensional structures of summertime antarctic meso-scale cyclones: part ii: numerical simulations with a limited area model. Global Atmosphere-Ocean System, 4:181–208, 1996. URL: https://www.researchgate.net/publication/290287701_Three-dimensional_structures_of_summertime_Antarctic_meso-scale_cyclones_Part_II_Numerical_simulations_with_a_limited_area_model (visited on 17.01.2022).

  • Günther Heinemann. A wintertime polar low over the eastern weddell sea (antarctica): a study with avhrr, tovs, ssm/i and conventional data. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 58(1-4):83–102, 1996. doi:10.1007/BF01027558.

  • Günther Heinemann. On the development of wintertime meso-scale cyclones near the sea ice front in the arctic and antarctic. Global Atmosphere-Ocean System, 4:89–123, 1996.

  • Günther Heinemann. Three-dimensional structures of summertime antarctic meso-scale cyclones: part i: observational studies with aircraft, satellite and conventional data. Global Atmosphere-Ocean System, 4:149–180, 1996. URL: https://www.researchgate.net/publication/290652367_Three-dimensional_structures_of_summertime_antarctic_meso-scale_cyclones_Part_I_Observational_studies_with_aircraft_satellite_and_conventional_data (visited on 17.01.2022).

  • John Turner, David Bromwich, Steven Colwell, Stephen Dixon, Tim Gibson, Terry Hart, Günther Heinemann, Hugh Hutchinson, Kieran Jacka, Steven Leonard, Michael Lieder, Lawrie Marsh, Stephen Pendlebury, Henry Phillpot, Mike Pook, and Ian Simmonds. The antarctic first regional observing study of the troposphere (frost) project. Bulletin of the American Meteorological Society, 77(9):2007–2032, 1996. doi:10.1175/1520-0477(1996)077{\textless}2007:TAFROS{\textgreater}2.0.CO;2.

  • G. Heinemann, S. Nol, A. Chedin, N. Scott, and C. Claud. Sensitivity studies of tovs retrievals with 3i and itpp retrieval algorithms: application to the resolution of meso-scale phenomena in the antarctic. Archives for Meteorology, Geophysics, and Bioclimatology Series A, 55(1-2):87–100, 1995. doi:10.1007/BF01029604.

  • GÜnter Heinemann. Tovs retrievals obtained with the 3i-algorithm. a study of a meso-scale cyclone over the barents sea. Tellus A, 47(3):324–330, 1995. doi:10.3402/tellusa.v47i3.11519.

  • Christina Köpken, Günther Heinemann, Alain Chédin, Chantal Claud, and Noëlle Scott. Assessment of the quality of tovs retrievals obtained with the 3i algorithm for antarctic conditions. Journal of Geophysical Research: Atmospheres, 100(D3):5143, 1995. doi:10.1029/94JD02960.

  • G. Heinemann and L. Rose. Surface energy balance, parameterizations of boundary-layer heights and the application of resistance laws near an antarctic ice shelf front. Boundary-Layer Meteorology, 51(1-2):123–158, 1990. doi:10.1007/BF00120464.

  • Günther Heinemann. Mesoscale vortices in the weddell sea region (antarctica). Monthly Weather Review, 118(3):779–793, 1990. doi:10.1175/1520-0493(1990)118{\textless}0779:MVITWS{\textgreater}2.0.CO;2.

  • Günther Heinemann. Über die rauhigkeitslänge zo der schneeoberfläche des filchner-ronne-schelfeises (on the roughness length zo of the snow surface of the filchner-ronne ice shelf). Polarforschung, pages 17–24, 1989.

  • Günther Heinemann. On the structure and energy budget of the boundary layer in the vicinity of the filchner/ronne ice shelf front (antarctica). Beitr. Phys. Atmosph., 61:244–258, 1988.

  • Günther Heinemann. Zur parametrisierung von strahlungsflüssen in der antarktis mit hilfe von synoptischen beobachtungen. Meteorologische Zeitschrift, pages 86–89, 1988.

  • Günther Heinemann. Lee-vortices in the antarctic. Beitr. Phys. Atmosph., 59:599–602, 1986.

Indices and tables